3.858 \(\int \sqrt [3]{a+b \sec (c+d x)} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=229 \[ \frac{\sqrt{2} (b B-a C) \tan (c+d x) \sqrt [3]{a+b \sec (c+d x)} F_1\left (\frac{1}{2};\frac{1}{2},-\frac{1}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt{\sec (c+d x)+1} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}}+\frac{\sqrt{2} C (a+b) \tan (c+d x) \sqrt [3]{a+b \sec (c+d x)} F_1\left (\frac{1}{2};\frac{1}{2},-\frac{4}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt{\sec (c+d x)+1} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}} \]

[Out]

(Sqrt[2]*(a + b)*C*AppellF1[1/2, 1/2, -4/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*
Sec[c + d*x])^(1/3)*Tan[c + d*x])/(b*d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(1/3)) + (Sqrt[2]
*(b*B - a*C)*AppellF1[1/2, 1/2, -1/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*Sec[c
+ d*x])^(1/3)*Tan[c + d*x])/(b*d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.246931, antiderivative size = 229, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 34, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.147, Rules used = {4062, 12, 3834, 139, 138} \[ \frac{\sqrt{2} (b B-a C) \tan (c+d x) \sqrt [3]{a+b \sec (c+d x)} F_1\left (\frac{1}{2};\frac{1}{2},-\frac{1}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt{\sec (c+d x)+1} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}}+\frac{\sqrt{2} C (a+b) \tan (c+d x) \sqrt [3]{a+b \sec (c+d x)} F_1\left (\frac{1}{2};\frac{1}{2},-\frac{4}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt{\sec (c+d x)+1} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^(1/3)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Sqrt[2]*(a + b)*C*AppellF1[1/2, 1/2, -4/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*
Sec[c + d*x])^(1/3)*Tan[c + d*x])/(b*d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(1/3)) + (Sqrt[2]
*(b*B - a*C)*AppellF1[1/2, 1/2, -1/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*Sec[c
+ d*x])^(1/3)*Tan[c + d*x])/(b*d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(1/3))

Rule 4062

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_), x_Symbol] :> Dist[1/b, Int[(a + b*Csc[e + f*x])^m*(A*b + (b*B - a*C)*Csc[e + f*x]), x], x] + Dist
[C/b, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[a^2 -
 b^2, 0] &&  !IntegerQ[2*m]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3834

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[Cot[e + f*x]/(f*Sqr
t[1 + Csc[e + f*x]]*Sqrt[1 - Csc[e + f*x]]), Subst[Int[(a + b*x)^m/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Csc[e + f
*x]], x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] &&  !IntegerQ[2*m]

Rule 139

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*((b*(e + f*x))/(b*e - a*f))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
((b*e)/(b*e - a*f) + (b*f*x)/(b*e - a*f))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 138

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f))])/(b*(m + 1
)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rubi steps

\begin{align*} \int \sqrt [3]{a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\frac{\int (b B-a C) \sec (c+d x) \sqrt [3]{a+b \sec (c+d x)} \, dx}{b}+\frac{C \int \sec (c+d x) (a+b \sec (c+d x))^{4/3} \, dx}{b}\\ &=\frac{(b B-a C) \int \sec (c+d x) \sqrt [3]{a+b \sec (c+d x)} \, dx}{b}-\frac{(C \tan (c+d x)) \operatorname{Subst}\left (\int \frac{(a+b x)^{4/3}}{\sqrt{1-x} \sqrt{1+x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt{1-\sec (c+d x)} \sqrt{1+\sec (c+d x)}}\\ &=-\frac{((b B-a C) \tan (c+d x)) \operatorname{Subst}\left (\int \frac{\sqrt [3]{a+b x}}{\sqrt{1-x} \sqrt{1+x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt{1-\sec (c+d x)} \sqrt{1+\sec (c+d x)}}+\frac{\left ((-a-b) C \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{\left (-\frac{a}{-a-b}-\frac{b x}{-a-b}\right )^{4/3}}{\sqrt{1-x} \sqrt{1+x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt{1-\sec (c+d x)} \sqrt{1+\sec (c+d x)} \sqrt [3]{-\frac{a+b \sec (c+d x)}{-a-b}}}\\ &=\frac{\sqrt{2} (a+b) C F_1\left (\frac{1}{2};\frac{1}{2},-\frac{4}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{b d \sqrt{1+\sec (c+d x)} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}}-\frac{\left ((b B-a C) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt [3]{-\frac{a}{-a-b}-\frac{b x}{-a-b}}}{\sqrt{1-x} \sqrt{1+x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt{1-\sec (c+d x)} \sqrt{1+\sec (c+d x)} \sqrt [3]{-\frac{a+b \sec (c+d x)}{-a-b}}}\\ &=\frac{\sqrt{2} (a+b) C F_1\left (\frac{1}{2};\frac{1}{2},-\frac{4}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{b d \sqrt{1+\sec (c+d x)} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}}+\frac{\sqrt{2} (b B-a C) F_1\left (\frac{1}{2};\frac{1}{2},-\frac{1}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{b d \sqrt{1+\sec (c+d x)} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}}\\ \end{align*}

Mathematica [B]  time = 26.6249, size = 21684, normalized size = 94.69 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Sec[c + d*x])^(1/3)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [F]  time = 0.151, size = 0, normalized size = 0. \begin{align*} \int \sqrt [3]{a+b\sec \left ( dx+c \right ) } \left ( B\sec \left ( dx+c \right ) +C \left ( \sec \left ( dx+c \right ) \right ) ^{2} \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^(1/3)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x)

[Out]

int((a+b*sec(d*x+c))^(1/3)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{1}{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(1/3)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*(b*sec(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{1}{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(1/3)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c))*(b*sec(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (B + C \sec{\left (c + d x \right )}\right ) \sqrt [3]{a + b \sec{\left (c + d x \right )}} \sec{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**(1/3)*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Integral((B + C*sec(c + d*x))*(a + b*sec(c + d*x))**(1/3)*sec(c + d*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{1}{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(1/3)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*(b*sec(d*x + c) + a)^(1/3), x)